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UNIQUE ERGODICITY OF FLOWS ON
HOMOGENEOUS SPACES

BY
ROBERT ELLIS AND WILLIAM PERRIZQ'

ABSTRACT

Let G be a unimodular Lie group, I' a co-compact discrete subgroup of G and
‘a’ a semisimple element of G. Let T, be the map gI'—>agl': G/T— G/T. The
following statements are pairwise equivalent: (1) (T,, G/I', @) is weak-mixing.
(2) (T,, G/T'}) is topologically weak-mixing. (3) (G*, G/T') is uniquely ergodic. (4)
(G",GIT,w) is ergodic. (5) (G*, G/T') is point transitive. (6) (G*, G/T) is
minimal. If in addition G is semisimple with finite center and no compact
factors, then the statement *(T,, G/T', w) is ergodic”” may be added to the above
list.

0. Introduction

In this paper we give a different proof of and extend slightly the main result
obtained by Bowen in [2]. The latter states: Let G be a unimodular Lie group, T
a cocompact discrete subgroup of G and a a semisimple element of G such that
the flow (T, G/I', w) is weak-mixing. Then (G*, G/T) is uniquely ergodic. (See
section 2 for definitions.) We prove (2.4) that in the above situation the following
statements are pairwise equivalent: (1) (T,, G/T', w) is weak-mixing. (2) (T., G/T)
is topologically weak-mixing. (3) (G*, G/T') is uniquely ergodic. (4) (G*, G/T', w)
is ergodic. (5) (G* G/I') is point transitive. (6) (G*, G/T') is minimal.

If in addition G is semisimple with finite center and no compact factors, then
the statement “(T,, G/T', w) is ergodic” may be added to the above list. (See
Proposition 3.4).

Our proof resulted from an attempt to apply the method used by Marcus in [4]
to the situation considered by Bowen. In [4] Marcus proves that the horocycle
flow (¢.) is uniquely ergodic by showing that limr_..(1/T)fqh o d.(x)ds
is constant for every continuous h. He does this by studying
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lim,.x (1/2")[5 h o s o f, (x)ds = lim,_.. [h of, o (x)ds and exploiting the
way in which the geodesic flow (f;) and the horocycle flow (¢) are related. In
our discussion G* plays the role of the horocycle flow and T, the role of the
geodesic flow.

The basic ideas involved in our approach are abstracted and discussed in
section 1. There we consider a flow (X, T) with compact phase space X and
locally compact phase group T together with a homeomorphism ¢ of X such
that ¢ 'T¢ = T and a supported Borel measure o invariant with respect to both
T and ¢. The essential ““ingredient” is the existence of a compact neighborhood
V of the identity of T such that (i) the maps t > ¢"¢™": VT (n=0)
converge uniformly to the constant map ¢t —e: V— T and (ii) the family of
maps x = (1/u(V)fvf(xtd")du(t): X -C (n=0) is equicontinuous (f €
C(X)). (Here n is Haar measure on T.)

Under these assumptions an abstract version of the aforementioned theorem
is obtained (see 1.10). This is applied in sections 2 and 3 to get the results
discussed above.

1. General theory
Here we discuss an abstract version of the results obtained by Bowen in [2].

1.1 Noration. The following notation will be used throughout this section.

(a) (X, T)is a flow with compact T, phase space X and locally compact phase
group T with Haar measure pu.

(b) ¢ is a homeomorphism of X such that ¢t¢ '€ T (t € T). (Here T is
viewed as a subgroup of the group of homeomorphisms of X.)

(¢) w will denote a Borel probability measure on X invariant under ¢ and T
such that w(N)>0 for all open subsets N of X.

(d) # will denote the Hilbert space L,(X,w) and U, U, (¢t € T) will denote
the unitary operators induced by ¢ and ¢t (t € T) respectively.

(¢) The linear map L:C(X)—>C(X) s defined by (Lf)(x)=
(M (V) vf(xt)du(t), where V is a fixed compact neighborhood of the identity
of T. It is easy to see that L has a continuous linear extension (also denoted L) to
# when C(X) is viewed as a subset thereof.

1.2 Basic AssumpTions. 1. The sequence of maps t > ¢"d™": V—->T (n=
0) converges uniformly to the constant map t —e: V—T.

2. The family (LU"f|n = 0} is equicontinuous for all f € C(X). (Note LU"f is
just the map x = (L/u (V)[vf(xtd")du(t): X = C.)
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1.3 Lemma. For each f € C(X) let there exist a sequence of positive integers
J(f) and a constant c(f) such that the sequence (U"LU"f|n € J(f)) converges
pointwise to c(f). Then the flow (X, T) is uniquely ergodic.

Proor. Let m be a T-invariant Borel probability measure on X and let
fE C(X).
By Fubini’s theorem

5 g __ L g
u(V) J, | seoo ym ()l (1) = [[| s 97 ttram ()

for all n. Since m is T-invariant and ¢ "t¢" € T (¢t € T), the left hand side of the
above equation is just m (f). Thus m (f) = [ U™"LU"f(x )dm (x) which converges
to m(c(f)) = c(f). The proof is completed.

1.4 CoroLLARY. For each f€ C(X) let there exist a sequence of positive
integers J(f) and a constant c(f) such that the sequence (LU"f|n € J(f))
converges uniformly to c(f). Then the flow (X, T) is uniquely ergodic.

Proor. This follows from 1.3 and the fact that (U"LU"f)(x)=
(LU Y (x¢ "MxEX,nEZ).

1.5 LemMa. The sequence of operators (U"LU "n = 0) converges strongly to
the identity.

Proor. Let f& # and £ >0. Then by 1 of 1.2 there exists a positive integer
N such that [|[U"UU™f-fll<e (t€V,n=N). (Recall that the map
s— Uf: T— # is continuous.) Then

jurLuf 1= | s [ vus o -

= -“%/_) " fv (U"UU™f = fdu(¢) ”

- [ oy

<e.
1.6 CoroLLARY. Let Uf = Af. Then Lf = f.

Proor. Let &>0. By 1.5 there exists n with LU "f-U"f|=
IULU™"f = fl <e. But [LUf = UTfl=|A7"Lf = AT f| = |ILf - fI.
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1.7 Remarks. 1. Corollary 1.6 says that L is the identity on the set of L,
¢-eigenfunctions. Thus if #» denotes the closed subspace spanned by the latter,
Lf=f (f € #). Another way of saying this is that LP = P where P is the
projection onto #,. The elements of #, are called L,-almost periodic functions
(with respect to ¢). For a discussion see [3].

1.8 LemMa. Let f € C(X) with Pf = f. Then f is an almost periodic function,
i.e. (U"f|n€Z)is a relatively compact subset of C(X).

Proor. It is well known that it suffices to show that (U"f|n = 0) is equi-
continuous.

By 2 of 1.2 (LU"f| n = 0) is equicontinuous. Since Pf = f, PU"f = U"f forall n
(see [3]). Hence LU"f = U"f (a.e. w) by 1.7, whence LU"f = U"f since LU"f
and U"f are continuous and @ (N)>0 for all nonempty open sets N.

1.9 LemMa. Let the flow (X, ¢) be topologically weak mixing. Then (X, T) is
uniquely ergodic and (X, ¢, w) is weak mixing. (Note: The hypothesis states that
there are no continuous ¢-eigenfunctions and the second part of the conclusion
that there are no L, ¢-eigenfunctions.)

Proor. Let f € C(X). Then there exists a sequence of positive integers (n;)
with (U™f) converging weakly to Pf [3]. By 2 of 1.2 we may assume that (LU™f)
converges uniformly to the continuous function g.

Since (LU"f)— LPf = Pf weakly, Pf = g whence Pg = P°’f = Pf =g By 1.8
g is an almost periodic function and so must be constant since there are no
nonconstant continuous eigenfunctions. The first part of the conclusion now
follows from 1.4.

The above proof shows that P(C(X))CC. Hence P(¥#)CC and (X, ¢, w) is
weakly mixing.

1.10 ProprosITION. Statements 1 through 4 are equivalent, they are all implied
by 5, and when X is metrizable or T is amenable all five statements are equivalent.
In the latter case 6 may be added to the list of equivalences. 1. (X, ¢, w) is
weak -mixing. 2. (X, @) is topologically weak -mixing. 3. (X, T, w) is uniquely
ergodic. 4. (X, T, w) is ergodic. 5. (X, T) is point transitive (i.e., there exists xo € X
with cls(x,T)= X). 6. (X, T) is minimal.

Proor. That 1 implies 2 follows immediately from the definition of weak-
mixing and topologically weak-mixing.

Lemma 1.9 shows that 2 implies 1 and 3.

Clearly 3 implies 4.
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Assume 4 and let f be a continuous ¢-eigenfunction with eigenvalue A. Let
(n:) be a sequence of positive integers tending to infinity with im A ™™ = 1. Then

f(xt)y=lmAf(xt)=lmf(xtd ™) =limf(xd P td ™)

=limf(x¢™")=lmA™"f(x) = f(x)

by 1 of 1.2. Thus f(xt)=f(x) (x € X, t €T). Since (X, T, w) is ergodic and
w(N) >0 for all nonvacuous open sets, f is constant. Thus 4 implies 2. When X
is metrizable 4 together with the fact that o is supported implies 5.

Assume 5 and again let f be a continuous ¢-eigenfunction. Then as above
f(xt)=f(x) (x € X,t € T) whence f(x)= f(xo) (x € X) and so 5 implies 2.

It is well known that when T is amenable statement 3 together with the fact
that w(N) >0 for all nonempty open sets N implies that (X, T) is minimal.

The proof is completed.

2. Homogeneous spaces

In this section we apply the results of section 1 to the action of certain
subgroups of a connected Lie group G on the homogeneous space G/T" where I’
is a cocompact discrete subgroup of G. (Note that under these conditions G is
unimodular, see [5, 1.4, 1.5, 1.9].)

Let a € G. Then the automorphism g — aga™": G — G induces an automor-
phism ad(a) of the Lie algebra & of G. The latter splits into the direct sum of
three ad(a) invariant subalgebras &°(a), & (a), and &* (a) which correspond to
the eigenvalues A of ad(a) with [A[<1,|A|=1, and |A|>1 respectively. The
element a is semisimple if ad (a)[@‘(a) is semisimple i.e. diagonalizable over
the complex numbers. The subgroups of G corresponding to &°(a), & (a), and
®*(a) will be denoted G*(a), G°(a), and G*“(a) respectively.

To apply the results of section 1 we let X =TI'\G = {I'g lg EG), T=G" and
¢ the map I'g > 'ga™": X — X where a is a semisimple element of G. The fact
that G is unimodular implies that the Haar measure on G induces a measure o
on X which is both T and ¢ invariant and which has the property that w(N)>0
for all nonempty open subsets N of X. There remains the task of finding the set
V such that the assumptions of 1.2 are satisfied.

2.1 Remarks. 1. The map I‘g—)g"F:F\G—)G/I‘={gF[g € G} is an
isomorphism of the flow (NG, G) onto the flow (G, G/T'). This map also
provides an isomorphism of the flows (X, T) and (X, ¢) onto (G* G/I') and
(¢, G/T) respectively where ¢ is the map gI'— agl': G/ - G/T'. Thus the
results obtained there may be applied to the situation discussed in [2].
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2. From the definition of G* it follows that there is a neighborhood W of the
identity of G* such that the maps g —>a "ga": W — G* converge uniformly to
the constant map g —e: W— G* Thus any compact neighborhood V of ¢ in
T=G* with VCW will satisfy assumption 1 of 1.2.

3. Let G* be the closed connected subgroup corresponding to &°(a)+
&°(a). The semisimplicity of a implies that given any neighborhood U of e in
G* there exists a neighborhood W of e in G* with a"Wa™ CU (nz0)
(see [2]).

2.2 LemMMA. There exists an open neighborhood U of the identity of G such that
the map g = xg: U— X is a diffeomorphism onto an open neighborhood of x
(x € X).

Proor. It suffices to find a neighborhood U of e such that the map
g — xg: U— X is injective (x € X).

Since I' is discrete there exists a neighborhood N of e with T NN =e. For
each g € G let U, be a symmetric neighborhood of e with gU;'g ™' CN. By the
compactness of X there exists a finite subset F of G with X =
U{m(gU,)|g € F}. (Here  is the canonical map of G onto X =I'\G.)

Set U= ﬂ{Ug[g € F} and let xg, = xg, for some x € X and g, g, in U.
There exist g € F and u € U, with w(gu)=x. Then I'gug, = I'gug, whence
gugigi'u'g'e€l. But gugg:'u'g ' €gUUUUg 'CgUeg™ and so
gug.g:'u'g™" = e; from which it follows that g, = g.. The proof is completed.

Let U be as in Lemma 2.2 and let W and A be neighborhoods of identity of
G* and G* respectively such that the maps (f,a)—ta: WXA-->G and
(a,t)—> at: AX W — G are injective with images contained in U (i.e. WAU
AW CU). Then for any open subsets W; of W and A, of A the maps
(ta)—=xta: Wi x A= X and (e, t)— xat: Ay X W,— X are diffeomorphisms
onto open subsets of x (x € X).

Henceforth V will denote a compact neighborhood of the identity of G* and
N an open neighborhood of the identity of G such that t'gr € WA forallg €N
and ¢ in an open neighborhood of V. Then gt =ts(g, t)y(g,t) (§ EN,tE V)
where s and y are differentiable functions of N X V into W and A respectively.

Let ¢ be the function (gt)—>ts(gt):NXV—->T, ¢, the map
t—> (g, t): V—T and v, the measure uy,' (g € N). Then

! (1) = — .
mfv flxts (8, )8™)dp (1) = 7y L(v) f(xtd™)dv, (1)

1

_ o dy
=2 o f(xté ):i-;fd“'(t)'
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Thus
. |5, fostenenan - [, fxiemau o)
=z, (=g g ne)

Since ¢ is continuously differentiable and ¢, is the inclusion map,
lim,_. u (VA (V))=0 and lim,_.. |1~ dv,/du | = 0 uniformly.

Let £ > 0. There exists a neighborhood M of the identity of G such that (i)
[f(xg)—f(x)|<e/2 (x € X,g €EM). Since y(e,t)=e¢ (tE€ V) there exists a
neighborhood N,of ¢ in G such that N,CN and(ii)¢ "y(g,t)¢"EM(g EN,
t€V,nz0)(see 3 of 2.1). Let K be a neighborhood of e in G such that K CN,
and (iii) |1 - dv,/du||f] < e/4 and ,u(VA([/g(V))Hf] <el/d (g EK).

Let x € X and y = xg for some g € K. Then

flytd") = f(xgid") = f(xts(g, 1)y (8, )d") = f(xts(g )" "y (g 1)¢").

Hence (a) |f(ytd" — f(xts(g, 1)d")| < e/2 (t € V,n = 0) by (i) and (ii). Combin-
ing (a), (1) and (iif) we see that

! "V (1) — —— . -
IM_(_V_)L f(xtd™)dp(t) V) fv fytd™)du () | <e  (nz0).
We have thus proved:

2.3 LemMma. There exists a compact neighborhood V of the identity of T such
that the sequence (LU"f|n = 0) is equicontinuous (f € C(X)) where Lh(x)=
(U (V) fvh(xt)du(t) and Uh(x) = h(xd)(x € X, h € C(X)).

Lemma 2.3 and 2 of 2.1 allow us to apply 1.10 and conclude:

2.4 ProprOSITION. Let a be a semisimple element of a unimodular connected
Lie group G, U a cocompact discrete subgroup of G, T, the map
gl'—agl: G/T = G/I', and w the measure induced on G /T" by the Haar measure
on G. Then the following statements are pairwise equivalent. (1) (T,, G/T', ) is
weak -mixing. (2) (T., G/T') is topologically weak-mixing. (3) (G*,G/T) is
uniquely ergodic. (4) (G*, G/T', w) is ergodic. (5) (G*, G/T') is point transitve. (6)
(G* G/TI') is minimal. (For (5) recall that G* is nilpotent [2] hence amenable.)

3. Semisimple G

In this section we add the assumption that G is semisimple with finite center
and no compact factors. (This means that G modulo its center is isomorphic to a
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product of simple groups none of which is compact.) We conclude that the
statement ‘“(T,, G/T', w) is ergodic” may be added to those of 2.4.

We preserve the notation of section 2 and in addition denote by H the closed
subgroup of G generated by G* U G".

3.1 LemMma. Let f be a continuous ¢-eigenfunction on X. Then f(xh) = f(x)
(x EX, h €H)

Proor. Let f(x¢)=Af(x) (x€X). Then A"f(xg)=f(xgd")=
f(x¢"d "gd") (x € X, g € G, all n).

If g € G* then one may choose a sequence n, — —» with A™ — 1. Since
¢ g™ — e the above relation shows that f(xg)= f(x) (x € X).

On the other hand if g € G* one takes a sequence n; — © with A" — 1 to show
that in this case also f(xg)= g(x) (x € X).

The proof is completed.

3.2 LemMmA. Let K be the closed subgroup of G generated by I' U H. Then
(K\G, ¢) is equicontinuous.

Proor. Let d be a metric on K\G and ¢ > 0. Then there exists a neighbor-
hood U of e in G such that d(xg,x)<e (x € K\G, g € U). By 3 of 2.1 there
exists a neighborhood W of ¢ in G* with ¢ "g¢p" € U (n=0,g € W).

Let x € K\G and y = xg for some g € W. Then

d(x¢" y¢p")=d(x¢d* xd"d"gd")<e  (nz0).

Since xW is a neighborhood of x, the sequence (¢" | n = 0) is equicontinuous on
K\G. The proof is completed.

3.3 Remarks. 1. The subgroup H is normal and so K = TH. (For a proof see
(6]. There the case of a real flow is considered, the proof for the discrete case is
similar.)

2. Set § = G/H and let A = 7(T) where 7: G — § is the canonical map. Then
S is semisimple and S/A is compact. Hence by [1] the component A, of the
identity of A is a normal subgroup of S. Set R = S/A; and 2 = A/A,. Then 2 is a
closed discrete subgroup of the semisimple group R and 2\R is compact; indeed
2\R = A\S. Thus ¢ and o induce a homeomorphism ¢ of Z\R and a measure of
v on Z\R such that (3\R, ¢, w) is a homomorphic image of (I'NG, ¢, w).

Since w(K) CA, (2\R, ¢) is a homomorphic image of (K\G, ¢) whence by 3.2
it is equicontinuous.

If (T\G, ¢, w) were ergodic then (2\R, ¢, w) would be ergodic and equicon-
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tinuous hence minimal (recall w (N) > 0 for all nonempty open sets). This would
mean that 3\R was homeomorphic to an n-torus or a single point.

However Z\R cannot be homeomorphic to an n-torus with n = 1, for then 3
would be abelian (consider the homotopy sequence of the bundle (R,3\R) and
recall that R is connected) and so would be in the center of R [1,4.4] and Z\R
would be a torus; contradicting the fact that R is semisimple.

Thus if (\G, ¢, ») is ergodic, then 2= R whence A=S and so K = G.

3.4 ProposITION. Let a be a semisimple element of a connected semisimple Lie
group G with finite center and no compact factors, I' a cocompact discrete subgroup
of G, T, the map gT — agl': G/T'— G/, and o the measure induced on G/T" by
the Haar measure on G. Then the following statements are pairwise equivalent. (1)
(T, GIT,w) is weak-mixing. (2) (T., G/T) is topologically weak-mixing. (3)
(G*“, G/T) is uniquely ergodic. (4) (G, GIT', w) is ergodic. (5) (G*, G[T') is point
transitive. (6) (G", G/T') is minimal. (7) (T, G/T', w) is ergodic.

Proor. The equivalence of the first six statements follows from 2.4.

Clearly (7) follows from (1). We show that (7) implies (2).

Let f be a continuous T,-eigenfunction. Then by 3.1 f(hgD')= f(gI)
(g € G, h € H)whence f is constant on G/T" by 2 of 3.2. The proof is completed.
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