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UNIQUE ERGODICITY OF FLOWS ON 
HOMOGENEOUS SPACES 

BY 

R OB ER T ELLIS AND WILLIAM PERRIZO* 

ABSTRACT 

Let G be a unimodular Lie group, F a co-compact discrete subgroup of G and 
' a '  a semisimple element of G. Let To be the map gF- -*agF :  G/F--*G/F. The 
following statements are pairwise equivalent: (1) (To, G/F, to) is weak-mixing. 
(2) (To, G/F) is topologically weak-mixing. (3) (G ~, G/F) is uniquely ergodic. (4) 
(G", G/F,  to) is ergodic. (5) (G u, G/F) is point transitive. (6) (G ~, G/F) is 
minimal. If in addition G is semisimple with finite center and no compact 
factors, then the statement "(To, G/F, to) is ergodic" may be added to the above 
list. 

O. Introduction 

In this paper we give a different proof of and extend slightly the main result 
obtained by Bowen in [2]. The latter states: Let G be a unimodular Lie group, F 
a cocompact discrete subgroup of G and a a semisimple element of G such that 
the flow (Ta, G/F, to) is weak-mixing. Then (G ~, G/F) is uniquely ergodic. (See 

section 2 for definitions.) We prove (2.4) that in the above situation the following 
statements are pairwise equivalent: (1) (T,, G/F, to) is weak-mixing. (2) (T,, G/F) 
is topologically weak-mixing. (3) (G u, G/F) is uniquely ergodic. (4) (G u, G/F, to) 
is ergodic. (5) (G ~, G/F) is point transitive. (6) (G u, G/F) is minimal. 

If in addition G is semisimple with finite center and no compact factors, then 

the statement "(Ta, G/F, to) is ergodic" may be added to the above list. (See 
Proposition 3.4). 

Our proof resulted from an attempt to apply the method used by Marcus in [4] 

to the situation considered by Bowen. In [4] Marcus proves that the horocycle 

flow (~b~) is uniquely ergodic by showing that limr~®(1/T)f~hocks(x)ds 
is constant for every continuous h. He does this by studying 
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lim,~=(1/2")f~"hocksoft.(x)ds=lim,~=f~hof, oc~s(x)ds and exploiting the 

way in which the geodesic flow (f,) and the horocycle flow (4,s) are related. In 

our discussion G" plays the role of the horocycle flow and Ta the role of the 

geodesic flow. 

The basic ideas involved in our approach are abstracted and discussed in 

section 1. There we consider a flow (X, T) with compact phase space X and 

locally compact phase group T together with a homeomorphism ~b of X such 

that ~b-lT~b = T and a supported Borel measure to invariant with respect to both 

T and th. The essential "ingredient" is the existence of a compact neighborhood 

V of the identity of T such that (i) the maps t ~4 , " td , - " :  V---~ T (n ~_ 0) 

converge uniformly to the constant map t ~ e :  V ~  T and (ii) the family of 

maps x ~ (1//x(V))fvf(xt~b")dtz(t): X ~ C  (n = 0) is equicontinuous (f 

C(X)). (Here i z is Haar measure on T.) 

Under these assumptions an abstract version of the aforementioned theorem 

is obtained (see 1.10). This is applied in sections 2 and 3 to get the results 

discussed above. 

1. General theory 

Here we discuss an abstract version of the results obtained by Bowen in [2]. 

1.1 NOTATION. The following notation will be used throughout this section. 

(a) (X, T) is a flow with compact 7"2 phase space X and locally compact phase 

group T with Haar measure/x.  

(b) ~ is a homeomorphism of X such that ~t4~-1~ T (t E T). (Here T is 

viewed as a subgroup of the group of homeomorphisms of X.) 

(c) ~o will denote a Borel probability measure on X invariant under 4~ and T 

such that o~(N)>0 for all open subsets N of X. 

(d) gg will denote the Hilbert space Lz(X, w) and U, U, (t E T) will denote 

the unitary operators induced by ¢h and t (t E T) respectively. 

(e) The linear map L:C(X)-->C(X) is defined by (Lf)(x)= 
(1/tz (V))fvf(xt)dlx (t), where V is a fixed compact neighborhood of the identity 

of 7". It is easy to see that L has a continuous linear extension (also denoted L) to 

Y( when C(X) is viewed as a subset thereof. 

1.2 BASIC ASSUMPTIONS. | .  The sequence of maps t ~ 4~"t~b-" : V--~ T (n => 

0) converges uniformly to the constant map t ~ e: V---> T. 

2. The family (LU"fl n _-> 0) is equicontinuous for all f ~ C(X). (Note LU"f is 

just the map x ~ (1/~ ( V))fvf(xtch")dl~ (t): X ~ C.) 
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1.3 LEMMA. For each f E C(X) let there exist a sequence of positive integers 
J(f) and a constant c(f) such that the sequence (U-"LU"fl n ~ J(f))  converges 
pointwise to c(f). Then the flow (X, T) is uniquely ergodic. 

PROOF. Let m be a T-invariant Borel probability measure on X and let 

f ~ C(X) .  
By Fubini's theorem 

#(V)  fv f f(xcb-"t&")dm(x)d#tt)-I~(V) f (xck-"t6" )dtz ( t )dm (x ) 

for all n. Since m is T-invariant and &-"t~b" E T (t ~ T), the left hand side of the 

above equation is just m (f). Thus m (f) = f U~"L U"f(x)dm (x) which converges 

to m(c(f))= c(f). The proof is completed. 

1.4 COROLLARY. For each f E C(X) let there exist a sequence of positive 
integers J(f) and a constant c(f) such that the sequence (LU"fln U J(f)) 
converges uniformly to c(f). Then the flow (X, T) is uniquely ergodic. 

PROOF. This follows from 1.3 and the fact that (U-"LU"f)(x)= 
(LUT)(x  ")(x x,  n z). 

1.5 LEMMA. The sequence of operators (U"LU-"n ~ O) converges strongly to 
the identity. 

PROOF. Let f E ~ and e > 0. Then by 1 of 1.2 there exists a positive integer 

N such that ][U"U,U-"f-fll<e ( tE V,n>-N). (Recall that the map 

s ~ Usf: T ~  )~ is continuous.) Then 

I} U:LU-"f - I]I = I fv U"U'U-"fdtx(t)-f l 
1 

1 
- I~(V) I fv (U"U,U-"f - f)dlz(t) II 

 lfv = / x ( V )  I I U " U ' U - " f  - f l l d l ~ ( t )  

1.6 COROLLARY. Let Uf  = Af. Then L f  = f. 

PROOF. Let e > 0 .  By 1.5 there exists n with I [LU " f - U - " f l l  = 

t1U"LU " f  - f l l  < e. But t t LU- " f  - U - " f  I[ = [ [A-"Lf  - A-°fll = It Lf - fl[. 
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1.7 REMARKS. 1. Corollary 1.6 says that L is the identity on the set of L2 

q~-eigenfunctions. Thus if ~p denotes the closed subspace spanned by the latter, 

Lf  = f ( rE  ~p). Another  way of saying this is that LP = P where P is the 

projection onto ~e. The elements of ~ ,  are called L2-almost periodic functions 

(with respect to ~b). For a discussion see [3]. 

1.8 LEMMA. Let f E C(X)  with Pf = [. Then f is an almost periodic function, 

i.e. (U"f I n E Z) is a relatively compact subset of C(X). 

PROOF. It is well known that it suffices to show that (U"fl n-> 0) is equi- 

continuous. 

By 2 of 1.2 (LU"fl n _-> 0) is equicontinuous. Since Pf = f, PU"f = U"f for all n 

(see [3]). Hence LU"f = U"f (a.e. to) by 1.7, whence LU"f = U"f since LU"f 

and U"f are continuous and t o ( N ) > 0  for all nonempty open sets N. 

1.9 LEMMA. Let the flow (X, 6 )  be topologically weak mixing. Then (X, T) is 

uniquely ergodic and (X, ¢b, to) is weak mixing. (Note: The hypothesis states that 

there are no continuous ~b-eigenfunctions and the second part of the conclusion 

that there are no L2 4~-eigenfunctions.) 

PROOF. Let f E  C(X). Then there exists a sequence of positive integers (n,) 

with (U",f) converging weakly to Pf [3]. By 2 of 1.2 we may assume that (LU"'f) 

converges uniformly to the continuous function g. 

Since (LUn'f)---~ LPf = Pf weakly, Pf = g whence Pg = p2f = pf  = g. By 1.8 

g is an almost periodic function and so must be constant since there are no 

nonconstant continuous eigenfunctions. The first part of the conclusion now 

follows from 1.4. 
The above proof shows that P(C(X))CC.  Hence P ( ~ ) C C  and (X, 6, to) is 

weakly mixing. 

1.10 PROPOSITION. Statements 1 through 4 are equivalent, they are all implied 

by 5, and when X is metrizable or T is amenable all five statements are equivalent. 

In the latter case 6 may be added to the list of equivalences. 1. (X, ~b, to) is 

weak-mixing. 2. (X, ~b) is topologically weak-mixing. 3. (X, T, to) is uniquely 

ergodic. 4. (X, T, to) is ergodic. 5. (X, T) is point transitive (i.e., there exists xo E X 

with cls(x0T) = X). 6. (X, T) is minimal. 

PROOF. That 1 implies 2 follows immediately from the definition of weak- 

mixing and topologically weak-mixing. 

Lemma 1.9 shows that 2 implies 1 and 3. 

Clearly 3 implies 4. 



280 R. ELLIS AND W. PERRIZO Israel J. Math. 

Assume 4 and let f be a continuous ~b-eigenfunction with eigenvalue A. Let 

(n,) be a sequence of positive integers tending to infinity with lim A -"  = 1. Then 

f ( xt ) = lim A - ' f  ( xt ) = lim f ( xt~b-", ) = lim f ( xck- '6"t4,-" '  ) 

= l i r a / ( x 6 - ' )  = lim A-",f(x)= f ( x )  

by 1 of 1.2. Thus f (x t )  = f ( x )  (x E X, t E T). Since (X, T, to) is ergodic and 

to(N) > 0 for all nonvacuous open sets, f is constant. Thus 4 implies 2. When X 

is metrizable 4 together with the fact that to is supported implies 5. 

Assume 5 and again let f be a continuous ~b-eigenfunction. Then as above 

f (x t )  = f (x )  (x ~ X, t E T) whence f ( x )  = f(xo) (x E X )  and so 5 implies 2. 

It is well known that when T is amenable statement 3 together with the fact 

that t o ( N ) > 0  for all nonempty open sets N implies that (X, T) is minimal. 

The proof is completed. 

2. Homogeneous spaces 

In this section we apply the results of section 1 to the action of certain 

subgroups of a connected Lie group G on the homogeneous space G/F where F 

is a cocompact discrete subgroup of G. (Note that under these conditions G is 

unimodular, see [5, 1.4, 1,.'5, 1.9].) 

Let a E G. Then the automorphism g ~ aga-': G --* G induces an automor- 

phism ad (a) of the Lie algebra (~ of G. The latter splits into the direct sum of 

three ad (a) invariant subalgebras (~' (a), (go (a), and (g" (a) which correspond to 

the eigenvalues A of ad(a)  with IAI< 1, IA1 = 1, and IA I>  1 respectively. The 

element a is semisimple if ad(a)lg6C(a) is semisimple i.e. diagonalizable over 

the complex numbers. The subgroups of G corresponding to ~ ' ( a ) ,  (~c (a), and 

(g"(a) will be denoted G ' ( a ) ,  GC(a), and G"(a)  respectively. 

To apply the results of section 1 we let X = F\G = {Fg t g ~ G}, T = G", and 

qb the map Fg ---, Fga-': X ~ X where a is a semisimple element of G. The fact 

that G is unimodular implies that the Haar measure on G induces a measure to 

on X which is both T and ~b invariant and which has the property that to(N) > 0 

for all nonempty open subsets N of X. There remains the task of finding the set 

V such that the assumptions of 1.2 are satisfied. 

2.1 REMARKS. 1. The map F g ~ g - ' F : F \ G ~ G / F = { g F ] g E G }  is an 

isomorphism of the flow (F \G ,G)  onto the flow (G, G/F). This map also 

provides an isomorphism of the flows (X, T) and (X, ~b) onto (G", G/F) and 

(tb, G/I') respectively where $ is the map gF--*agF: G/F---~ G/F. Thus the 

results obtained there may be applied to the situation discussed in [2]. 
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2. From the definition of G"  it follows that there is a neighborhood W of the 

identity of G"  such that the maps g -~ a-"ga" : W - +  G" converge uniformly to 

the constant map g --~ e : W-+  G". Thus any compact neighborhood V of e in 

T = G"  with V C W will satisfy assumption 1 of 1.2. 

3. Let G 'c be the closed connected subgroup corresponding to [gS(a)+ 

(~C(a). The semisimplicity of a implies that given any neighborhood U of e in 

G 'c there exists a neighborhood W of e in G "c with a " W a - " C U  (n >0)  

(see [2]). 

2.2 LEMMA. There exists an open neighborhood U of the identity of G such that 

the map g --+ xg : U --+ X is a diffeomorphism onto an open neighborhood of x 

(x x ) .  

PROOF. It suffices to find a neighborhood U of e such that the map 

g ~ xg: U--+ X is injective (x ~ X). 

Since F is discrete there exists a neighborhood N of e with F Cl N = e. For 

each g E G let Us be a symmetric neighborhood of e with gU~g-'  CN. By the 

compactness of X there exists a finite subset F of G with X =  

U{rr(gU~)Ig EF} .  (Here ~r is the canonical map of G onto X = F\G.) 

Set U =  N { U g l g E F }  and let xg ,=xg2  for some x ~ X  and g,, g2 in U. 

There exist g E F and u E Us with r r (gu )=  x. Then Fgug, = Fgug2 whence 

gug,g2'u- '  g- '  E F. But g u g ~ g 2  ~ u-lg -' E gUgUUUsg ' C gU~gg -' and so 

gug,g2~u-~g-' = e; from which it follows that g, = g2. The proof is completed. 

Let U be as in Lemma 2.2 and let W and A be neighborhoods of identity of 

G"  and G 'c respectively such that the maps ( t , a ) - + t a :  W x A ~ G  and 

(a, t ) --+at:A x W--+ G are injective with images contained in U (i.e. WA U 

A W C U ) .  Then for any open subsets W, of W and A, of A the maps 

(t, a)--+ xta: W, × A, ~ X and (a, t)--+ xat: A, x W, + X are diffeomorphisms 

onto open subsets of x (x E X). 

Henceforth V will denote a compact neighborhood of the identity of G"  and 

N an open neighborhood of the identity of G such that t - 'gt  ~ W A  for all g E N 

~nd t in an open neighborhood of V. Then gt = ts(g, t )y(g,  t) (g E N, t E V) 

where s and y are differentiable functions of N x V into W and A respectively. 

Let ~0 be the function ( g , t ) - - + t s ( g , t ) : N x  V +  T, q,g the map 

t---~ 6(g, t): V ~  T and vg the measure/ ,qJ~'  (g ~ N). Then 

l fv l fo f ( x t~b" )d , ( t )  l~(V) f(xts(g,  t)d~")dt* (t) = - ~ j  ,,v) 

1 f,, f (x t~b.)dVsdlx( t ) .  
= I* (v) dg 
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Thus 
I 1 1 fv f(xts(g't)49")d#(t)--S~) fv f(xt49")dlz(t) ] 

(i) 

< 1 ( fv  I 1 d__~ [Jf ld tz+f , .  ] 1 +  d--~ I , f , d# ) .  
= tz(V) dlz a,,~v) dtz 

Since tp is continuously differentiable and 0, is the inclusion map, 

l im,~,#(VAtps(V))  = 0 and lims~e I1 - dv,/dtzl = 0 uniformly. 

Let e > 0. There exists a neighborhood M of the identity of G such that (i) 

I f ( x g ) - f ( x ) l < e / 2  ( x E X ,  g E M ) .  Since ~ / (e , t )=e  ( t ~ V )  there exists a 

neighborhood N, of e in G such that N. C N and (ii) 49 ~),(g, t)49" ~ M (g ~ N, 

t E V, n _-> 0) (see 3 of 2.1). Let K be a neighborhood of e in G such that K CN, 

and (iii) I 1 -  d~,/dtz IIfl < e/4 and #(VAOg(V))Il f l  < e/4 (g E K). 
Let x E X and y = xg for some g @ K. Then 

f(yt49" ) = f(xgt49" ) = f(xts (g, t)7 (g, t )49" ) = f(xts (g, t)49 "49 -"y (g, t )49" ). 

Hence (a)If(yt49" - f(xts(g,  049")1 < e/2 (t E V, n => 0) by (i) and (ii). Combin- 

ing (a), (1) and (iii) we see that 

f(yt49°)d (t) < (n e 0). 

We have thus proved: 

2.3 LEMMA. There exists a compact neighborhood V of the identity of T such 
that the sequence (LU"f] n >= O) is equicontinuous (f E C(X)) where Lh(x) = 

(1/l~(V)) fvh(xt)dl~(t) and gh(x)  = h(x49)(x E X, h E C(X)). 

Lemma 2.3 and 2 of 2.1 allow us to apply 1.10 and conclude: 

2.4 PROPOSITION. Let a be a semisimple element of a unimodular connected 
Lie group G, F a cocompact discrete subgroup of G, To the map 
g F--9 ag F: G/F ---> G/F,  and o~ the measure induced on G/F by the Haar measure 
on G. Then the following statements are pairwise equivalent. (1) (T., G/F, ~o) is 

weak-mixing. (2) (To, G/F) is topologically weak-mixing. (3) (GU, G/F) is 
uniquely ergodic. (4) (G", G/F, co) is ergodic. (5) (G", G/F) is point transitve. (6) 

(G u, G/F) is minimal. (For (5) recall that G" is nilpotent [2] hence amenable.) 

3. Semisimple G 

In this section we add the assumption that G is semisimple with finite center 
and no compact factors. (This means that G modulo its center is isomorphic to a 
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product of simple groups none of which is compact.) We conclude that the 

statement "(Ta, G/F, oJ) is ergodic" may be added to those of 2.4. 

We preserve the notation of section 2 and in addition denote by H the closed 

subgroup of G generated by G u U G' .  

3.1 LEMMA. Let f be a continuous 4-eigenfunction on X. Then f(xh )= f(x) 
(x EX,  h ~H) .  

PROOF. Let f(x4) = Af(x) (x E X). Then A"f (xg)=  f(xgd~")= 
f(x4"4-"g4") (x ~ X, g @ G, all n). 

If g E G "  then one may choose a sequence n ~ - ~  with A " , ~ I .  Since 

4 - ' g 4 "  ~ e the above relation shows that f(xg) = f(x) (x E X). 
On the other hand if g ~ G ~ one takes a sequence n~ ~ ~ with A ", ---* 1 to show 

that in this case also f(xg ) = g(x ) (x E X). 
The proof is completed. 

3.2 LEMMA. Let K be the closed subgroup of G generated by F U H. Then 
(K\G, 4 ) is equicontinuous. 

PROOF. Let d be a metric on KIG and E > 0 .  Then there exists a neighbor- 

hood U of e in G such that d(xg, x)< e (x ~ K\G,g E U). By 3 of 2.1 there 

exists a neighborhood W of e in G'C with ~b-"g4~" E U (n => 0, g E W). 

Let x ~ K\G and y = xg for some g E W. Then 

d (x4 ", Y4" ) = d (x4 x, x4  "4 -"g4" ) < e (n => 0). 

Since xW is a neighborhood of x, the sequence (4"  In _-> 0) is equicontinuous on 

K\G. The proof is completed. 

3.3 REMARKS. 1. The subgroup H is normal and so K = FH. (For a proof see 

[6]. There the case of a real flow is considered, the proof for the discrete case is 

similar.) 

2. Set S = G/H and let A = ~'(F) where ~:  G ~ S is the canonical map. Then 

S is semisimple and S/A is compact. Hence by [1] the component  Ao of the 

identity of A is a normal subgroup of S. Set R = S/Ao and Z = A/A0. Then E is a 

closed discrete subgroup of the semisimple group R and E\R is compact; indeed 

E/R ~ A\S. Thus 4 and ~o induce a homeomorphism qs of E\R and a measure of 

~, on E\R such that (£kR, ~, w) is a homomorphic image of (F\G, 4, w). 

Since r r (K)CA,  (~\R, 6)  is a homomorphic  image of (KIG, 4) whence by 3.2 

it is equicontinuous. 

If (F\G, 4~, w) were ergodic then (E\R, 6, oJ) would be ergodic and equicon- 
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tinuous hence minimal (recall to (N) > 0 for all nonempty open sets). This would 

mean that Z\R was homeomorphic to an n-torus or a single point. 

However  E\R cannot be homeomorphic to an n-torus with n => 1, for then E 

would be abelian (consider the homotopy sequence of the bundle (R, X\R) and 

recall that R is connected) and so would be in the center of R [1,4.4] and E\R 

would be a torus, contradicting the fact that R is semisimple. 

Thus if (F\G, 4', to) is ergodic, then Z = R whence A = S and so K = G. 

3.4 PROPOSITION. Let a be a semisimple element of a connected semisimple Lie 

group G with finite center and no compact factors, F a cocompact discrete subgroup 

of G, Ta the map g F-~ ag F: G /F --~ G /F , and to the measure induced on G/F by 

the Haar measure on G. Then the following statements are pairwise equivalent. (1) 

(Ta, G/F, to) is weak-mixing. (2) (T~, G/F) is topologically weak-mixing. (3) 

(G", G/F) is uniquely ergodic. (4) (G", G/F, to) is ergodic. (5) (G", G/F) is point 

transitive. (6) (G", G/F) is minimal. (7) (T~, G/F, to) is ergodic. 

PROOF. The equivalence of the first six statements follows from 2.4. 

Clearly (7) follows from (1). We show that (7) implies (2). 

Let f be a continuous T,-eigenfunction. Then by 3.1 f (hgF)=f (gF)  

(g E G, h E H )  whence f is constant on G/F by 2 of 3.2. The proof is completed. 
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